
Homework 4

36-708, Spring 2023

Due May 5 at 5PM EST

Please attach all code to your homework. In an RMarkdown document for example, this can be done
in one line (see Yihui Xie’s website for how to do this).

1 Shapley values

Consider a simple cost allocation problem. Suppose there are n people that wish to share transportation
to get from point A to their respective destinations, which are all in succession on the same street.
Suppose that the cost of going from point A to the ith person’s destination costs ci, and without loss of
generality suppose c1 < c2 · · · < cn. The ‘cost’, ν : 2[n] → R of a trip is defined in the following natural
way,

ν(∅) = 0

ν({i}) = ci

ν(S) = cj where j = max(S)

(a) Define the ‘sub-cost’ functions:

νj(S) =

{
cj − cj−1 if j ≤ max(S)

0 otherwise,

where c0 ≡ 0 by convention. That is, νj is the additional cost for going to the jth stop. It is 0 if nobody
needs to go beyond stop j, and otherwise is cj − cj−1. Show that

ϕi(ν) =

n∑
j=1

ϕi(νj)

(b) Show that for any i < j, person i is a ‘null player’ with respect to cost νj . Further, show that
persons i1, i2 ≥ j are equivalent with respect to cost νj .

(c) Use (b) to show that

ϕi(νj) =

{
cj−cj−1

n−j+1 if i ≥ j

0 otherwise.

Finally, conclude that

ϕi(ν) =

i∑
j=1

cj − cj−1

n− j + 1
.

(d) Interpret the Shapley values. Does such a cost division make sense? If you didn’t know about the
Shapley values, what would your fair division look like? What are some advantages and disadvantages of
your division strategy compared to Shapley’s? (If you would do the same thing as Shapley, comment on
its advantages and disadvantages.)

1

https://bookdown.org/yihui/rmarkdown-cookbook/code-appendix.html


2 Image segmentation and compression using k-means

In this part, we explore how we can use k-means clustering for image segmentation and compression. The
goal of image segmentation is to partition an image into multiple segments, where each segment typically
represents an object in the image. Consider the following algorithm for image segmentation.

• Treat each pixel in the image as a point in 3-dimensional space comprising the intensities of the
red, blue, and green channels. Treat each pixel in the image as a separate data point.

• Apply k-means clustering and identify the clusters.

• All the pixels belonging to a cluster are treated as a segment in the image.

For any value of k we can re-construct the image by replacing each pixel vector with the red, blue, and
green intensity triplet given by the center to which that pixel has been assigned.

(a) Implement a function that performs k-means++.

(b) Take any image (you can be creative here!) and show the image re-constructions obtained using
various values of k.

3 PCA for face recognition

In this part. we explore how we can use PCA to recognize faces. We play with AT&T database which
has 10 near frontal images of 40 individuals under different illuminations per individual. The data can
be downloaded from https://36708.github.io/hw4 faces/. We represent each image as a 1024 dimensional
vector (the images have 32 × 32 pixels).

(a) Implement a function to perform PCA.

(b) With the mean (µ̂n) and matrix of eigenvectors (V ) learned from the training data, you can project
other data points into this eigen space. Let xtest be a test point. Then, to project it into the
eigenspace, simply subtract the mean vector and multiply by the eigenvector matrix (i.e, compute
V (x− µ̂n)). This will give you a vector of length k. Given any point z ∈ Rk in the eigenspace we
can reconstruct the point in the original space as V ⊤z + µ̂n.

Take a test image and project it into the eigenspace (use k = 5, 10, 20, 40). Use the projections to
reconstruct the test images. Display the reconstructed images along with the original test image.

4 Neural networks

4.1 Warmup

(a) Consider a multi-class classification problem. We observe yi taking on K discrete values alongside
covariates xi ∈ Rp. One method of modelling this problem is multinomial logistic regression. Here,
we learn parameters β1, ..., βK−1 following the below structural equation:

P (yi = k|xi) =
exp

(
βT
k xi

)
1 +

∑K−1
l=1 exp

(
βT
l xi

) for k ≤ K − 1,

with P (yi = K|xi) = 1−
∑K−1

k=1 P (yi = k|xi). Reformulate this problem in terms of neural networks.
Specify the input layers, hidden layers, output layers, and loss function.

2

https://36708.github.io/hw4_faces/


4.2 PCA and autoencoders

In this problem, we explore the relation between PCA, kernel PCA and auto-encoder neural networks
(trained to output the same vector they receive as input). Consider the following setup.

• Number of data points: n

• Number of features: d

(a) Consider an auto-encoder with a single hidden layer of k nodes. Let wij denote the weight of the
edge from the ith input node to the jth hidden node. Similarly, let vij denote the weight of the edge
from the ith hidden node to the jth output node. Show how you can set the activation functions
of hidden and output nodes as well as the weights wij and vij such that the resulting auto encoder
resembles PCA.

4.3 Kernel PCA and autoencoders

Recall that kernel PCA is a non-linear dimensionality reduction technique where a principal vector vj is
computed as a linear combination of training examples in the feature space

vj =

n∑
i=1

αijϕ(xi)

Computing the principal component of a new point x can then be done using kernel evaluations:

zj(x) = ⟨vj , ϕ(x)⟩ =
n∑

i=1

αij⟨ϕ(xi), ϕ(x)⟩ =
n∑

i=1

αijk(xi, x)

We show that kernel PCA can be represented by a neural network. First we define a kernel node. A
kernel node with a vector wi of incoming weights and an input vector x computes the output y = k(x,wi).

(a) Show that, given a data set x1, . . . , xn , there exists a network with a single hidden layer and
the output of the network is the kernel principal components z1(x), . . . , zk(x) for a given input
x. Specify the number of nodes in the input, output and hidden layers, the type and activation
function of hidden and output nodes, and the weights of the edges in terms of α, x1, . . . , xn.

(b) What is the number of parameters (weights) required to store the network in the previous problem?

(c) Another way to do non-linear dimensionality reduction is to train an auto encoder with non-linear
activation functions (e.g. sigmoid) in the hidden layers instead of using kernels. State one advantage
and one disadvantage of that approach compared to kernel PCA.

4.4 Neural network for classification

In this problem, we play with the TensorFlow playground (http://playground.tensorflow.org), which is
a nice visual tool for training simple Multi Layer Perceptrons (MLPs). Your goal in this problem is
to carefully select input features to design the “smallest” MLP classifiers that can achieve low test loss
for each of the 4 data sets in TensorFlow playground shows the 4 data sets available on TensorFlow
playground). Here “smallest” is defined as having least number of neurons in the network. By low test
loss we mean a test loss ¡ 0.1 for the swiss roll data set and a test loss of ≈ 0 for the rest of the data sets.
Submit screenshots after your networks achieve the required test loss for each of the following data sets.

(a) Circles

(b) Clusters

(c) Squares

(d) Swiss Roll

3

http://playground.tensorflow.org


4.5 Neural network for regression

Finally, we use a neural network on a regression problem. This is the most open-ended problem so far
and you are essentially free to try anything. You are encouraged to play around with different packages
and various settings.

• Dataset: We play with the Ames Housing Dataset. Recall that the raw data is available at
http://jse.amstat.org/v19n3/decock/AmesHousing.txt and the dataset description can be found
at http://jse.amstat.org/v19n3/decock/DataDocumentation.txt.

• You will need to do some preprocessing (including missing values, possible outliers, etc.). Please
feel free to make any reasonable preprocessing decisions, so long as you report them.

• Train and test split: Again use a 3:1 random split.

• Neural network architecture: You are free to play around with any architecture.

(a) Report different choices (preprocessing, architecture, optimizers, etc.) you made throughout and
the resulting train and test accuracies.

(b) Comment on relative advantages and disadvantages of training a neural network versus a stacked
regressor you trained in a previous homework.

4

http://jse.amstat.org/v19n3/decock/AmesHousing.txt
http://jse.amstat.org/v19n3/decock/DataDocumentation.txt

	Shapley values
	Image segmentation and compression using k-means
	PCA for face recognition
	Neural networks
	Warmup
	PCA and autoencoders
	Kernel PCA and autoencoders
	Neural network for classification
	Neural network for regression


